1. Second-Order Circuit: RLC Circuit Analysis

1. Be able to find Initial and Final Values for RLC Circuits.
a. $\quad v\left(0^{-}\right)=v\left(0^{+}\right)=v(0)$
b. $i\left(0^{-}\right)=i\left(0^{+}\right)=i(0)$
c. For a Series RLC Circuit with 1 Resistor, 1 Inductor, and 1 Capacitor.
i. $\quad L \frac{d i(0)}{d t}+R i(0)+v(0)=0$
ii. $\frac{d i(0)}{d t}=\frac{1}{L}[-R i(0)-v(0)]=-\frac{R}{L}\left[i(0)+\frac{v(0)}{R}\right]=-\frac{1}{\tau_{L}}\left[i(0)+\frac{v(0)}{R}\right]$
d. For a Parallel RLC Circuit with 1 Resistor, 1 Inductor, and 1 Capacitor.
i. $\quad C \frac{d v(0)}{d t}+\frac{v(0)}{R}+i(0)=0$
ii. $\frac{d v(0)}{d t}=\frac{1}{C}\left[-\frac{v(0)}{R}-i(0)\right]=-\frac{1}{R C}[v(0)+\operatorname{Ri}(0)]=-\frac{1}{\tau_{C}}[v(0)+\operatorname{Ri}(0)]$
2. Be able to derive α and ω_{0} for a Source Free Series RLC Circuit.
a. Resistor, Inductor, and Capacitor have the -same Current.
b. Use KVL to write a Differential Equation for the Circuit in terms of Current.
i. $L \frac{d}{d t} i(t)+\operatorname{Ri}(t)+\frac{1}{c} \int_{-\infty}^{t} i(\tau) d \tau=0$
c. Take the Time Derivative to create a Second-order Differential Equation.
i. $L \frac{d^{2}}{d t} i(t)+R \frac{d}{d t} i(t)+\frac{1}{c} i(t)=0$
d. Simplify so that the coefficient on the highest order term is " 1 ".
i. Divide the entire equation by L.
ii. $\frac{d^{2}}{d t^{2}} i(t)+\frac{R}{L} \frac{d}{d t} i(t)+\frac{1}{L C} i(t)=0$
e. Write out the Characteristic Equation for our Differential Equation.
i. $x(t) \rightarrow s^{0}=1$
ii. $\quad x^{\prime}(t)=\frac{d}{d t} x(t) \rightarrow s^{1}$
iii. $\quad x^{\prime \prime}(t)=\frac{d^{2}}{d t^{2}} x(t) \rightarrow s^{2}$
iv. $x^{n}(t)=\frac{d^{n}}{d t^{n}} x(t) \rightarrow s^{n}$ where $n \in \mathbb{Z}^{+}$.
v. Using the relationship between an arbitrary function $x(t)$ and s, we can write out the Characteristic Equation for our Differential Equation.
3. $s^{2}+\frac{R}{L} s+\frac{1}{L C}=0$
f. Use the Quadratic Formula to solve for the Roots of the Characteristic Equation.
i. If $f(x)=a x^{2}+b x+c$ and we want the values for x which $f(x)=0 \ldots$
4. Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
ii. Applying the Quadratic Formula.
5. $s_{1,2}=\frac{-\frac{R}{L} \pm \sqrt{\left(\frac{R}{L}\right)^{2}-\frac{4}{L C}}}{2}$
iii. After simplifying the Quadratic Formula, we arrive at this conclusion.
6. $s_{1,2}=-\frac{R}{2 L} \pm \sqrt{\left(\frac{R}{2 L}\right)^{2}-\left(\frac{1}{\sqrt{L C}}\right)^{2}}$
g. The Roots of our Characteristic Equation can be simplified further. This will be relating our values in the Quadratic Formula with a variable α and ω_{0}.
i. Let $\alpha=\frac{R}{2 L}$ and $\omega_{0}=\frac{1}{\sqrt{L C}}$
ii. Using the following substitution, we arrive at the Roots of our Characteristic Equation in terms of α and ω_{0}.
7. $s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}$
8. Be able to derive α and ω_{0} for a Source Free Parallel RLC Circuit.
a. Resistor, Inductor, and Capacitor have the same Voltage.
b. Use KCL to write a Differential Equation for the Circuit in terms of Voltage.
i. $\quad C \frac{d}{d t} v(t)+\frac{v(t)}{R}+\frac{1}{L} \int_{-\infty}^{t} v(\tau) d \tau=0$
c. Take the Time Derivative to create a Second-order Differential Equation.
i. $C \frac{d^{2}}{d t^{2}} v(t)+\frac{1}{R} \frac{d}{d t} v(t)+\frac{1}{L} v(t)=0$
d. Simplify so that the coefficient on the highest order term is " 1 ".
i. Divide the entire equation by C.
ii. $\frac{d^{2}}{d t^{2}} v(t)+\frac{1}{R C} \frac{d}{d t} v(t)+\frac{1}{L C} v(t)=0$
e. Write out the Characteristic Equation for our Differential Equation.
i. Refer to (2.e.i-iv) to understand how to write out the Characteristic Equation for our Differential Equation.
9. $s^{2}+\frac{1}{R C} s+\frac{1}{L C}=0$
f. Use the Quadratic Formula to solve for the Roots of the Characteristic Equation.
i. If $f(x)=a x^{2}+b x+c$ and we want the values for x which $f(x)=0 \ldots$
10. Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
ii. Applying the Quadratic Formula.
11. $s_{1,2}=\frac{-\frac{1}{R C} \pm \sqrt{\left(\frac{1}{R C}\right)^{2}-\frac{4}{L C}}}{2}$
iii. After simplifying the Quadratic Formula, we arrive at this conclusion.
12. $s_{1,2}=-\frac{1}{2 R C} \pm \sqrt{\left(\frac{1}{2 R C}\right)^{2}-\left(\frac{1}{\sqrt{L C}}\right)^{2}}$
g. The Roots of our Characteristic Equation can be simplified further. This will be relating our values in the Quadratic Formula with a variable α and ω_{0}.
i. Let $\alpha=\frac{1}{2 R C}$ and $\omega_{0}=\frac{1}{\sqrt{L C}}$
ii. Using the following substitution, we arrive at the Roots of our Characteristic Equation in terms of α and ω_{0}.
13. $s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}$
14. Be able to understand the characteristics of α and ω_{0} for a Second-order Circuit.
a. The general roots for a Second-order Circuit is defined as follows.
i. $s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}$
b. There is a relationship between α and ω_{0} for a Second-order Circuit. Depending on the number of Roots (2, 1, or 0) in our Characteristic Equation, this affects the Voltage and Current equation for our Second-order Circuit. There are 3 responses a RLC Circuit.
c. Overdamped Response $\left(\alpha>\omega_{0}\right)$
i. This means that our Characteristic Equation has 2 Real Roots.
15. Think of a quadratic function that intersects the x-axis 2 times.
ii. The Solution to our Second-order Differential Equation is the following.
16. $x(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}$
iii. $x(t)$ will be our Time Varying Current for a Series RLC Circuit.
iv. $x(t)$ will be our Time Varying Voltage for a Parallel RLC Circuit.
v. Even if we have the solution, that is not enough to solve for our desired function. We have A_{1} and A_{2} in our solution so we will need to solve for these unknown coefficients.
vi. To solve for the coefficients, we will need a second equation to solve. In this case, we will take time derivative of our function $x(t)$.

$$
\text { 1. } \begin{aligned}
& x(t)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t} \\
& x^{\prime}(t)=s_{1} A_{1} e^{s_{1} t}+s_{2} A_{2} e^{s_{2} t}
\end{aligned}
$$

vii. Now that we have 2 equations and 2 unknowns, we will use the initial conditions for our given RLC Circuit. We are working with a Secondorder Circuit, so we need $x(0)$ and $x^{\prime}(0)$ to solve for the coefficients. Refer to (1.a-d) to find the initial values for our given RLC Circuit.

1. $x(0)=A_{1} e^{s_{1}(0)}+A_{2} e^{s_{2}(0)}$

$$
x^{\prime}(0)=s_{1} A_{1} e^{s_{1}(0)}+s_{2} A_{2} e^{s_{2}(0)}
$$

viii. We can simplify the previous Equation and we can solve the following System of Equations for the coefficients A_{1} and A_{2}.

$$
\text { 1. } \begin{aligned}
& x(0)=A_{1}+A_{2} \\
& x^{\prime}(0)=s_{1} A_{1}+s_{2} A_{2}
\end{aligned}
$$

d. Critically Damped Response ($\alpha=\omega_{0}$)
i. This means that our Characteristic Equation has 1 Real Root.

1. Think of a quadratic function that intersects the x-axis 1 time.
ii. The Solution to our Second-order Differential Equation is the following.
2. $x(t)=A_{1} e^{-\alpha t}+A_{2} t e^{-\alpha t}$
iii. $x(t)$ will be our Time Varying Current for a Series RLC Circuit.
iv. $x(t)$ will be our Time Varying Voltage for a Parallel RLC Circuit.
v. Even if we have the solution, that is not enough to solve for our desired function. We have A_{1} and A_{2} in our solution so we will need to solve for these unknown coefficients.
vi. To solve for the coefficients, we will need a second equation to solve. In this case, we will take time derivative of our function $x(t)$.
vii. This will be a little more difficult because we have 2 functions being multiplied with each other. We will use the Product Rule.
3. If $x(t)=f(t) g(t)$, then $x^{\prime}(t)=f(t) g^{\prime}(t)+f^{\prime}(t) g(t)$
viii. Using the Product Rule, we can take the time derivative of $x(t)$.

$$
\begin{aligned}
& \text { 1. } x(t)=A_{1} e^{-\alpha t}+A_{2} t e^{-\alpha t} \\
& x^{\prime}(t)=-\alpha A_{1} e^{-\alpha t}+A_{2} e^{-\alpha t}-\alpha A_{2} t e^{-\alpha t}
\end{aligned}
$$

ix. Now that we have 2 equations and 2 unknowns, we will use the initial conditions for our given RLC Circuit. We are working with a Secondorder Circuit, so we need $x(0)$ and $x^{\prime}(0)$ to solve for the coefficients. Refer to (1.a-d) to find the initial values for our given RLC Circuit.

1. $x(0)=A_{1} e^{-\alpha(0)}+A_{2} t e^{-\alpha(0)}$

$$
x^{\prime}(0)=-\alpha A_{1} e^{-\alpha(0)}+A_{2} e^{-\alpha(0)}-\alpha A_{2}(0) e^{-\alpha(0)}
$$

x. We can simplify the previous Equation and we can solve the following System of Equations for the coefficients A_{1} and A_{2}.

1. $x(0)=A_{1}+A_{2}$

$$
x^{\prime}(0)=-\alpha A_{1}+A_{2}
$$

e. Underdamped Response ($\alpha<\omega_{0}$)
i. This means that our Characteristic Equation has 0 Real Roots.

1. Think of a quadratic function that never intersects the x-axis.
ii. The Solution to our Second-order Differential Equation is the following.
2. $x(t)=\left[A_{1} \cos \left(\omega_{d} t\right)+A_{2} \sin \left(\omega_{d} t\right)\right] e^{-\alpha t}$
iii. An Underdamped circuit has a Damped Frequency ω_{d}.
3. $\omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}}$
iv. $x(t)$ will be our Time Varying Current for a Series RLC Circuit.
v. $x(t)$ will be our Time Varying Voltage for a Parallel RLC Circuit.
vi. Even if we have the solution, that is not enough to solve for our desired function. We have A_{1} and A_{2} in our solution so we will need to solve for these unknown coefficients.
vii. To solve for the coefficients, we will need a second equation to solve. In this case, we will take time derivative of our function $x(t)$.
viii. This will be a little more difficult because we have 2 functions being multiplied with each other. We will use the Product Rule.
4. If $x(t)=f(t) g(t)$, then $x^{\prime}(t)=f(t) g^{\prime}(t)+f^{\prime}(t) g(t)$
ix. Using the Product Rule, we can take the time derivative of $x(t)$.

$$
\text { 1. } \begin{aligned}
& x(t)=\left[A_{1} \cos \left(\omega_{d} t\right)+A_{2} \sin \left(\omega_{d} t\right)\right] e^{-\alpha t} \\
& x^{\prime}(t)=-\alpha\left[A_{1} \cos \left(\omega_{d} t\right)+A_{2} \sin \left(\omega_{d} t\right)\right] e^{-\alpha t}+ \\
& \omega_{d}\left[A_{2} \cos \left(\omega_{d} t\right)-A_{1} \sin \left(\omega_{d} t\right)\right] e^{-\alpha t}
\end{aligned}
$$

x. Now that we have 2 equations and 2 unknowns, we will use the initial conditions for our given RLC Circuit. We are working with a Secondorder Circuit, so we need $x(0)$ and $x^{\prime}(0)$ to solve for the coefficients. Refer to (1.a-d) to find the initial values for our given RLC Circuit.

1. $x(0)=\left[A_{1} \cos \left(\omega_{d}(0)\right)+A_{2} \sin \left(\omega_{d}(0)\right)\right] e^{-\alpha(0)}$

$$
\begin{aligned}
& x^{\prime}(0)=-\alpha\left[A_{1} \cos \left(\omega_{d}(0)\right)+A_{2} \sin \left(\omega_{d}(0)\right)\right] e^{-\alpha(0)}+ \\
& \omega_{d}\left[A_{2} \cos \left(\omega_{d}(0)\right)-A_{1} \sin \left(\omega_{d}(0)\right)\right] e^{-\alpha(0)}
\end{aligned}
$$

xi. We can simplify the previous Equation and we can solve the following System of Equations for the coefficients A_{1} and A_{2}.

1. $x(0)=A_{1}$

$$
x^{\prime}(0)=-\alpha A_{1}+\omega_{d} A_{2}
$$

