In the given circuit,
$v(t)=56 e^{-280 t} \mathrm{~V}, t>0$
$i(t)=7 e^{-280 t} \mathrm{~mA}, t>0$

References

Section Break Difficulty: Easy
Learning Objective: Understand solutions to unforced, first order linear differential equations.

1. Award: 10.00 points

Calculate the time constant τ.
The time constant τ is $3.57 \pm 2 \% \mathrm{~ms}$.

Explanation:

The time constant is given by $\tau=R C=\frac{1}{280}=3.57 \mathrm{~ms}$

The time constant τ is 3.57 ms .

Hints

Hint \#1

References

Worksheet Difficulty: Easy Learning Objective: Understand solutions to unforced, first order linear differential equations.

2. Award: 10.00 points

Find the time constant for the RC circuit in the given figure. Assume $R=12 \Omega$.

The time constant for the RC circuit in the given figure is $\quad 3.00 \pm 2 \% \mathrm{~s}$.

Explanation:

The time constant is given by $\tau=\mathrm{R}_{\text {th }} \mathrm{C}$, where $R_{\text {th }}$ is the Thévenin equivalent at the capacitor terminals.

The value of $R_{t h}$ can be determined as follows:
$R_{t h}=120 \Omega \| 80 \Omega+12 \Omega=\left(\frac{120 \Omega \times 80 \Omega}{120 \Omega+80 \Omega}\right)+12 \Omega=60.00 \Omega$
Therefore, $\tau=60.00 \Omega \times 0.05 \mathrm{~F}=3.00 \mathrm{~s}$
The time constant for the RC circuit in the given figure is 3.00 s .

Hints

Hint \#1

References
Worksheet Difficulty: Easy Learning Objective: Understand solutions to unforced, first order linear differential equations.

The switch in the given figure has been in position A for a long time. Assume the switch moves instantaneously from A to B at $t=0$. Find v for $t>0$. Assume $R=2 \mathrm{k} \Omega$.

The voltage $v(t)=v(0) \mathrm{e}^{-t / \tau}$, where $v(0)=\square 40.0 \pm 2 \% \mathrm{~V}$ and $\tau=\square 0.02 \pm 2 \% \mathrm{~s}$.

Explanation:

For $t<0, v(0)=40 \mathrm{~V}$
For $t>0$, we have a source-free RC circuit.
$\tau=R C=2 \mathrm{k} \Omega \times 10 \mu \mathrm{~F}=0.02 \mathrm{~s}$
$\nu(t)=v(0) B^{-t / \tau}=40 e^{-50.0 t} \mathrm{~V}$
The voltage $v(\mathrm{t})=v(0) \mathrm{B}^{-t / \tau}$, where $v(0)=40.0 \mathrm{~V}$ and $\tau=0.02 \mathrm{~s}$.

Hints

Hint\#1

References

Worksheet Difficulty: Medium Learning Objective: Understand solutions to unforced, first order linear differential equations.

In the given circuit, find the unknown quantities of $i(t)$ for $t>0$ if $i(0)=5 \mathrm{~A}$. Assume $L=8 \mathrm{H}$.

The current ${ }^{i(t)}=5 e^{-t / \tau} \mathrm{A}$, where $\tau=0.27 \pm 2 \% \mathrm{~s}$.

Explanation:

The given circuit is as shown below:

To find $R_{T H}$, we replace the inductor by a $1-\mathrm{V}$ voltage source as shown above.
$10 i_{1}-1+40 i_{2}=0$
But $i=i_{2}+\frac{J_{2}}{2}$ and $i=i_{1}$
i.e., $i_{1}=2 i_{2}=i$
$10 i-1+20 i=0 \rightarrow i=\frac{1}{30} \mathrm{~A}$
The Thévenin resistance is given as
$R_{T H}=\frac{1}{i}=30 \Omega$
The time constant is given by
$\tau=\frac{L}{R_{T H}}=\frac{8 \mathrm{H}}{30 \Omega}=0.27 \mathrm{~s}$
Therefore, the current $i(t)=5 e^{-z i .2 s} \mathrm{~A}$

The current $i(t)=5 e^{-t / \tau} \mathrm{A}$, where $\tau=0.27 \mathrm{~s}$.

Hints

Hint \#1

References

Worksheet Difficulty: Medium Learning Objective: Understand solutions to unforced, first order linear differential equations.

5. Award: 10.00 points

In the given circuit, find the value of R for which the steady-state energy stored in the inductor will be 1.1 J .

The value of R is \square $11.472 \pm 1 \% \Omega$.

Explanation:

The circuit can be replaced by its Thévenin equivalent shown below.
R th

$V_{T H}=\frac{80 \Omega}{80 \Omega+40 \Omega}(60 \mathrm{~V})=40 \mathrm{~V}$
$R_{T H}=40 \Omega \| 80 \Omega+R=\frac{80 \Omega}{3 \Omega}+\pi$
$I=i(0)=i(\infty)=\frac{V_{T H}}{R_{T H}}=\frac{40 \mathrm{~V}}{\frac{80 \Omega}{3 \Omega}+R}$
The value of R can be calculated as follows:
$w=\frac{1}{2} L I^{2}=(0.5) \times(2) \times\left(\frac{40 \mathrm{~V}}{\frac{80 \Omega}{3 \Omega}+R}\right)^{2}=1.10 \mathrm{~J}$
$\rightarrow \frac{40 \vee}{R+\frac{80 \Omega}{3 \Omega}}=1.05$
$\rightarrow R+\frac{80 \Omega}{3 \Omega}=38.14$
$\rightarrow R=38.14-\frac{80 \Omega}{3 \Omega}$
$\rightarrow R=11.472 \Omega$
The value of R is 11.472Ω.

Hints

Hint \#1
Hint \#2
Hint \#3

References

Worksheet Difficulty: Medium Learning Objective: Understand solutions to unforced, first order linear differential equations.

Express $v(t)$ in the given figure in terms of step functions.

Hints

Hint \#1

References

Multiple Choice Difficulty: Medium

Learning Objective: Understand singularity equations and their importance in solving linear differential equations.

The voltage across a $10-\mathrm{mH}$ inductor is $42 \delta(t-2) \mathrm{mV}$. Find the inductor current, assuming that the inductor is initially uncharged.

The inductor current is $i(t)=4.2 \pm 2 \% u(t-2) \mathrm{A}$.

Explanation:

The inductor current can be determined as follows:
$i(t)=\frac{1}{2} \int_{0}^{t} u(\tau) d \tau+i(0)$
$i(t)=\frac{10^{-3}}{10 \times 10^{-3}} \int_{0}^{t} 42 \delta(\tau-2) d \tau+0=4.2 u(t-2) \mathrm{A}$
It should be noted that the integration of the impulse function $\delta\left(t-t_{o}\right)$ produces the unit step $u\left(t-t_{0}\right)$. Whatever the multiplier, $(f(t))$ of the impulse function at $t=t_{0}$ ends up multiplying the unit step by the same amount $\left(f\left(t_{0}\right)\right)$. In this case $f(2)=4.2$.
$i(t)=4.2 u(t-2) \mathrm{A}$

The inductor current is $4.2 u(t-2) \mathrm{A}$.

Hints

Hint \#1

References

Worksheet \quad Difficulty: Medium \quad| Learning Objective: Understand singularity |
| :--- |
| equations and their importance in solving |
| linear differential equations. |

8. Award: 10.00 points

Find the solution of the differential equation $\frac{d v}{d t}+6 v=0, v(0)=-1 \mathrm{~V}$.
The solution of the given differential equation is $-\left(e^{-} 6 \pm 2 \% t\right) \mathrm{V}$.

Explanation:

The given differential equation can be solved as follows:
$v=\mathrm{A} \varepsilon^{-6 i}, \quad v(0)=\mathrm{A}=-1$
Therefore, $v(t)=-e^{-6 t} \mathrm{~V}$.
The solution of the given differential equation is $-e^{-6 t} \mathrm{~V}$.

Hints

Hint \#1

References

Worksheet Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.

Identify the solution of the following differential equation, subject to the stated initial condition.
$2 \frac{d v}{d t}-v=3 u(t), \quad v(0)=-6$
$v(t)=-3\left(1+e^{t / 2}\right) \mathrm{V}, \quad t<0$
$\rightarrow \bigcirc v(t)=-3\left(1+e^{t / 2}\right) u(t) \mathrm{V}, \quad t>0$$v(t)=3\left(1-e^{t / 2}\right) u(t) V, \quad t>0$$V(t)=3\left(1-e^{t / 2}\right) V, \quad t<0$

The given differential equation can be solved as below:
$V(t)=\mathrm{A}+\mathrm{B} \mathrm{e}^{t / 2}, \quad t>0$
$A=-3$,

$$
\begin{aligned}
& v(0)=-6=-3+B \rightarrow B=-3 \\
& v(t)=-3\left(1+e^{t / 2}\right) u(t) V, \quad t>0
\end{aligned}
$$

The solution for the given differential equation is $v(t)=-3\left(1+e^{t / 2}\right) u(t) \mathrm{V}, t>0$.

Hints

Hint \#1
Hint \#2

References

Multiple Choice Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.

A circuit is described by
$2 \frac{d v}{d t}+v=10$.

References

Section Break Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.
10. Award: 10.00 points

If $v(0)=3$, find $v(t)$ for $t \geq 0$.
The voltage $v(t)=\square 10 \pm 2 \%+(-7 \pm 2 \%)\left(e^{-} 0.50 \pm 2 \% t\right) \times u(t) \mathrm{V}$.

Explanation:

Let $v=v_{h}+v_{p}$ and $v_{p}=10$.
$\dot{U}_{h}+\frac{1}{2} v_{h}=0 \rightarrow U_{h}=A e^{-t / 2}$
$\nu=10+\mathrm{A} \mathrm{B}^{-0.50 t}$
$v(0)=3=10+\mathrm{A} \rightarrow \mathrm{A}=-7$
$\nu=10+(-7) e^{-0.60 t} \mathrm{~V}$

The voltage $v(t)=10+(-7)\left(e^{-0.50 t}\right) u(t) \mathrm{V}$.

Hints

Hint \#1
Hint \#2

References

Worksheet Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.

