1.

value:

10.00 points

A 60- μ F capacitor has energy $\omega(t) = 10 \cos^2 377t$ J and consider a positive v(t). Determine the current through the capacitor.

The current through the capacitor is $-13.060 \pm 2\% \sin(377t)$ A.

Explanation:

$$w(t) = \frac{C(v(t))^2}{2}$$

$$(v(t))^2 = \frac{2w(t)}{C}$$

$$(v(t))^2 = \frac{2 \times 10\cos^2(377t)}{60 \times 10^{-6}}$$

$$(v(t))^2 = 3333333.3 \cos^2(377t)$$

$$v(t) = \pm 577.4 \cos(377t) \text{ V}$$

Assume that
$$v(t) = 577.4 \cos(377t) \text{ V}$$
.

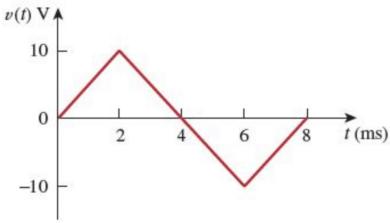
$$i(t) = C\frac{dv}{dt}$$

$$i(t) = 60 \times 10^{-6} \text{ F} \times 577.4 \times (-377 \sin(377t)) \text{ V}$$

$$i(t) = -13.060 \sin(377t) A$$

The current through the capacitor is -13.060 sin(377t) A.

The voltage across a $4-\mu F$ capacitor is shown in the given figure.



Find the currents for the ranges given below.

The currents at the given ranges are as follows:

For
$$0 < t < 2$$
 ms, $i_C(t) =$ 20 mA
For 2 ms $< t < 6$ ms, $i_C(t) =$ -20 mA
For 6 ms $< t < 8$ ms, $i_C(t) =$ 20 mA

Explanation:

For
$$0 < t < 2$$
 ms, $i_C(t) = 4 \times 10^{-6} d(5000t)/dt = 20$ mA.

For 2 ms <
$$t$$
 < 6 ms, $i_C(t) = 4 \times 10^{-6} d(20 - 5000t)/dt = -20 mA.$

For 6 ms <
$$t$$
 < 8 ms, $i_C(t)$ = 4 ×10⁻⁶ $d(-40 + 5000t)/dt$ = 20 mA.

The currents at the given ranges are as follows:

For
$$0 < t < 2$$
 ms, $i_C(t) = 20$ mA

For 2 ms <
$$t$$
 < 6 ms, $i_C(t)$ = -20 mA

For 6 ms <
$$t$$
 < 8 ms, $i_C(t)$ = 20 mA

A capacitor has the terminal voltage

$$v = \begin{cases} 50 \text{ V} & t \le 0 \\ Ae^{-100t} + Be^{-600t} \text{ V}, & t \ge 0 \end{cases}$$

The capacitor has an initial current of 2 A.

Find the constants A and B if the capacitance is C = 4 mF.

The constants A and B are $61 \pm 2\%$ and $-11 \pm 2\%$, respectively.

Explanation:

$$i = C \frac{dv}{dt} = -100 A C e^{-100 t} - 600 B C e^{-600 t}$$
 (1)

$$i(0) = 2 = -100AC - 600BC \rightarrow 5 = -A - 6B$$
 (2)

$$v(0^+) = v(0^-) \to 50 = A + B$$
 (3)

Solving (2) and (3) leads to A = 61 and B = -11

The constants *A* and *B* are 61 and –11, respectively.

A capacitor has the terminal voltage

$$v = \begin{cases} 50 \text{ V} & t \le 0 \\ Ae^{-100t} + Be^{-600t} \text{ V}, & t \ge 0 \end{cases}$$

The capacitor has an initial current of 2 A.

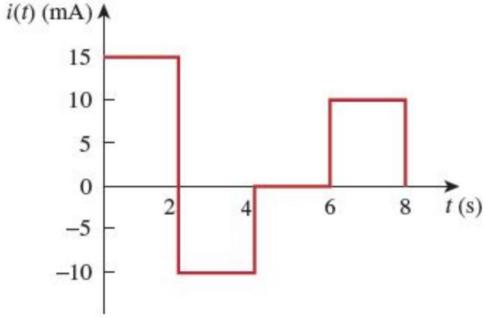
Find the capacitor current for t > 0, where the capacitance C = 4 mF.

The capacitor current is
$$i = \frac{-24.4 \pm 2\%}{e^{-100t}} + \frac{26.4 \pm 2\%}{e^{-600t}} A$$
.

Explanation:

 $i = (-100 \times 61 \times 4 \times 10^{-3} e^{-100t}) + (600 \times 11 \times 4 \times 10^{-3} e^{-600t}) = -24.4 e^{-100t} + 26.4 e^{-600t}$ A The capacitor current is $i = -24.4 e^{-100t} + 26.4 e^{-600t}$ A.

A 4-mF capacitor has the current waveform shown in the given figure. Assume that v(0) = 10 V.



Find the value of voltage for 6 s < t < 8 s.

The value of voltage $v(t) = [(2.5 \pm 2\%)t - (2.5 \pm 2\%)] \text{ V}.$

$$v = \frac{1}{C} \int_0^t i dt + v(0) = 10 + \frac{1}{4 \times 10^{-3}} \int_0^t i(t) dt$$

For
$$0 < t < 2$$
 s, $i(t) = 15$ mA,
 $v(t) = 10 + \frac{10^{-3}}{4 \times 10^{-3}} \int_0^t 15 dt = 10 + 3.75 t$

$$v(2) = 10 + 7.5 = 17.5 \text{ V}$$

For 2 s < t < 4 s, $i(t) = -10 \text{ mA}$,
 $v(t) = \frac{1}{4 \times 10^{-3}} \int_{2}^{t} i(t) dt + v(2) = -\frac{10 \times 10^{-3}}{4 \times 10^{-3}} \int_{2}^{t} dt + 17.5 = 22.5 - 2.5t$

$$v(4) = 22.5 - 2.5 \times 4 = 12.5 \text{ V}$$

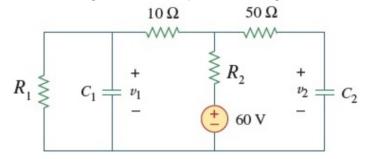
For 4 s < t < 6 s, $i(t) = 0$,
 $v(t) = \frac{1}{4 \times 10^{-3}} \int_{2}^{t} 0 \, dt + v(4) = 12.5 \text{ V}$

For 6 s <
$$t$$
 < 8 s, $i(t)$ = 10 mA,
 $v(t) = \frac{10 \times 10^{-3}}{4 \times 10^{-3}} \int_4^t dt + v(6) = 2.5(t - 6) + 12.5 = 2.5t - 2.5$

Hence, v(t) = [2.5t - 2.5] V

The value of voltage v(t) = [2.5t - 2.5] V.

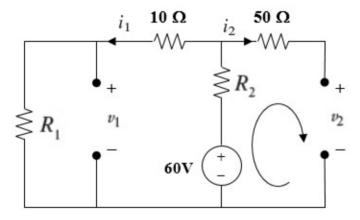
Find the voltage across the capacitors in the given circuit under dc conditions, where R_1 = 66 Ω and R_2 = 17 Ω .



The voltage across the capacitors are $v_1 = \begin{bmatrix} 42.58 \pm 2\% \\ \end{bmatrix}$ V and $v_2 = \begin{bmatrix} 49.03 \pm 2\% \\ \end{bmatrix}$ V.

Explanation:

Under dc conditions, the circuit becomes as shown below:



$$i_2 = 0$$

 $i_1 = \frac{60 \text{ V}}{(66 + 10 + 17)}$

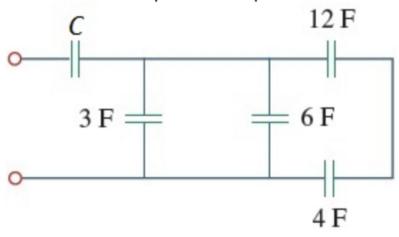
$$i_1 = 0.65 \text{ A}$$

 $v_1 = 66i_1 = 42.58 \text{ V}$
 $v_2 = 60 - 17i_1 = 49.03 \text{ V}$

The voltage across the capacitors are v_1 = 42.58 V and v_2 = 49.03 V.

7.

Determine the equivalent capacitance for the given circuit, where C = 6 F.



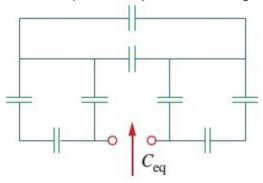
The equivalent capacitance is $4.00 \pm 2\%$ F.

Explanation:

4 F in series with 12 F = 4 × 12/(16) = 3 F 3 F in parallel with 6 F and 3 F = 3 + 6 + 3 = 12 F 6 F in series with 12 F = 4.00 F i.e. C_{eq} = 4.00 F

The equivalent capacitance is 4.00 F.

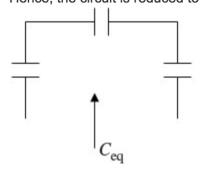
Find the equivalent capacitance in the given circuit if all capacitors are 30 μ F.



The equivalent capacitance is $16.364 \pm 2\% \mu F$.

Explanation:

30 μF in parallel with 30 μF = 60 μF 30 μF in series with 30 μF = 15 μF 15 μF in parallel with 30 μF = 45 μF Hence, the circuit is reduced to that shown below.



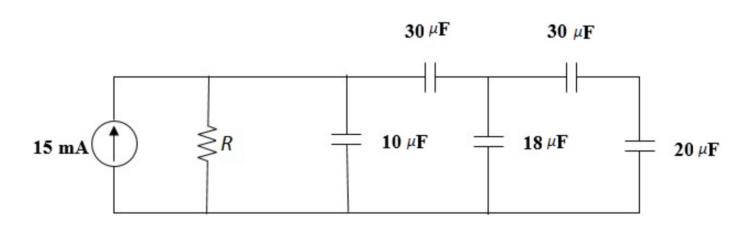
$$1/C_{eq} = ((1/45\,\mu\text{F}) + (1/45\,\mu\text{F}) + (1/60\,\mu\text{F})\,)$$

$$1/C_{eq} = 0.0611\,\mu\text{F}$$

$$C_{eq} = 16.364\,\mu\text{F}$$

The equivalent capacitance is 16.364 μ F.

In the given circuit, assume that the capacitors were initially uncharged and that the current source has been connected to the circuit long enough for all the capacitors to reach steady-state (no current flowing through the capacitors). Also assume that $R = 8 \text{ k}\Omega$.



Determine the voltage across each capacitor.

The voltage across each capacitor is as follows:

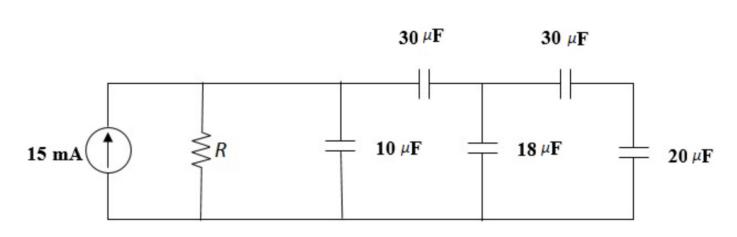
$$v_{10} = 120.00 \pm 2\%$$
 V
 $v_{30} = 60.00 \pm 2\%$ V
 $v_{18} = 60.00 \pm 2\%$ V
 $v_{30} = 24.00 \pm 2\%$ V
 $v_{20} = 36.00 \pm 2\%$ V

Reducing the capacitance starting from right to left, In the given figure, $30 \ \mu\text{F}$ is in series with $20 \ \mu\text{F}$. Therefore, the equivalent capacitance is $(30 \times 20) \ \mu\text{F}/(30 + 20) \ \mu\text{F} = 12 \ \mu\text{F}$. In the given figure, $12 \ \mu\text{F}$ is in parallel with $18 \ \mu\text{F}$. Therefore, the equivalent capacitance is $(12 + 18) \ \mu\text{F} = 30 \ \mu\text{F}$. $v_{10} = 15 \ \text{mA} \times 8 \ \text{k}\Omega = 120.00 \ \text{V}$ $v_{30} = 120.00/2 = 60.00 \ \text{V}$ $v_{18} = 120.00/2 = 60.00 \ \text{V}$ $v_{20} = [20 \ \mu\text{F}/(30 + 20) \ \mu\text{F}] \times (60.00 \ \text{V}) = 24.00 \ \text{V}$ $v_{20} = [30 \ \mu\text{F}/(30 + 20) \ \mu\text{F}] \times (60.00 \ \text{V}) = 36.00 \ \text{V}$

The voltage across each capacitor are as follows:

 $v_{10} = 120.00 \text{ V}$ $v_{30} = 60.00 \text{ V}$ $v_{18} = 60.00 \text{ V}$ $v_{30} = 24.00 \text{ V}$ $v_{20} = 36.00 \text{ V}$

In the given circuit, assume that the capacitors were initially uncharged and that the current source has been connected to the circuit long enough for all the capacitors to reach steady-state (no current flowing through the capacitors). Also assume that $R = 8 \text{ k}\Omega$.



Determine the energy stored in each capacitor.

The energy stored in each capacitor is as follows:

$$w_{10} = 72.00 \pm 2\%$$
 mJ
 $w_{30} = 54.00 \pm 2\%$ mJ
 $w_{18} = 32.40 \pm 2\%$ mJ
 $w_{30} = 8.64 \pm 2\%$ mJ
 $w_{20} = 12.96 \pm 2\%$ mJ

Explanation:

$$w_{10} = [0.5 \times 10 \times 120^2 \times 10^{-6}] \text{ J} = 72.00 \text{ mJ}$$

 $w_{30} = [0.5 \times 30 \times 60^2 \times 10^{-6}] \text{ J} = 54.00 \text{ mJ}$
 $w_{18} = [0.5 \times 18 \times 60^2 \times 10^{-6}] \text{ J} = 32.40 \text{ mJ}$
 $w_{30} = [0.5 \times 30 \times 24^2 \times 10^{-6}] \text{ J} = 8.64 \text{ mJ}$
 $w_{20} = [0.5 \times 20 \times 36^2 \times 10^{-6}] \text{ J} = 12.96 \text{ mJ}$

The energy stored in each capacitor is as follows:

$$w_{10} = 72.00 \text{ mJ}$$

 $w_{30} = 54.00 \text{ mJ}$
 $w_{18} = 32.40 \text{ mJ}$
 $w_{30} = 8.64 \text{ mJ}$
 $w_{20} = 12.96 \text{ mJ}$

11.

The voltage across a 57-mH inductor is given by $v(t) = [5e^{-2t} + 2t + 4] \text{ V for } t > 0$. Determine the current i(t) through the inductor. Assume that i(0) = 0 A.

The current through the inductor is $i(t) = [-43.86 \pm 2\% e^{-2t} + 17.54 \pm 2\% t^2 + 70.18 \pm 2\% t + 43.86 \pm 2\%]$ A.

Explanation:

$$\nu = L \frac{di}{dt} \rightarrow i = \frac{1}{L} \int_0^t i d\tau + i(0)$$

$$i = \frac{1}{57 \times 10^{-3}} \int_0^t \left(5e^{-2t} + 2t + 4 \right) dt + 0$$

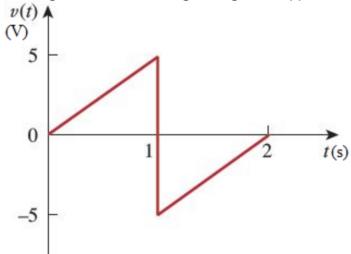
$$i = \frac{1}{57 \times 10^{-3}} \left(5 \frac{e^{-2t}}{-2} + 2 \frac{t^2}{2} + 4t \right)_0^t$$

$$i = \frac{1}{57 \times 10^{-3}} \left[-2.5e^{-2t} + t^2 + 4t - (-2.5) \right]$$

$$i = [-43.86e^{-2t} + 17.54t^2 + 70.18t + 43.86] A$$

The current through the inductor is $i(t) = [-43.86e^{-2t} + 17.54t^2 + 70.18t + 43.86]$ A.

If the voltage waveform in the given figure is applied to a 28-mH inductor, find the inductor current i(t) for 0 < t < 2 s. Assume i(0) = 0.



The inductor current for 0 < t < 1 s is $i(t) = (89.29 \pm 2\%) t^2$ A

The inductor current for 1 < t < 2 s is i(t) = [$357.14 \pm 2\% - 357.14 \pm 2\% t + 89.29 \pm 2\% t^2] A.$

$$i(t) = \frac{1}{L} \int_{0}^{t} v(t) dt + i(0)$$
For $0 < t < 1$, $v = 5t$

$$i = \frac{1}{28 \times 10^{-3}} \int_{0}^{t} 5t dt + 0$$

$$i = \frac{5}{28 \times 10^{-3}} \left(\frac{t^{2}}{2}\right)_{0}^{t}$$

$$i = \frac{5}{2 \times 28 \times 10^{-3}} t^{2}$$

$$i(t) = 89.29 t^{2} A$$

$$i(1) = 89.29 \times 1^{2} = 89.29 A$$
For $1 < t < 2$, $v = -10 + 5t$

$$i = \frac{1}{28 \times 10^{-3}} \int_{1}^{t} (-10 + 5t) dt + i(1)$$

$$i = \frac{1}{28 \times 10^{-3}} \left(-10t + 5\frac{t^{2}}{2}\right)_{1}^{t} + 89.29$$

$$i = \frac{5}{2 \times 28 \times 10^{-3}} (-4t + t^{2})_{1}^{t} + 89.29$$

$$i = 89.29(-4t + t^{2} + 3) + 89.29$$

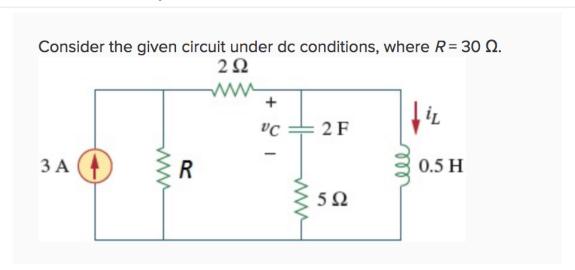
$$i = (89.29 \times -4)t + 89.29t^{2} + (89.29 \times 3) + 89.29$$

$$i = -357.14t + 89.29t^{2} + 357.14$$

 $i(t) = [357.14 - 357.14t + 89.29t^2] A$

The inductor current for 0 < t < 1 s is $i(t) = 89.29 t^2$ A

The inductor current for 1 < t < 2 is $i(t) = [357.14 - 357.14t + 89.29t^2]$ A.

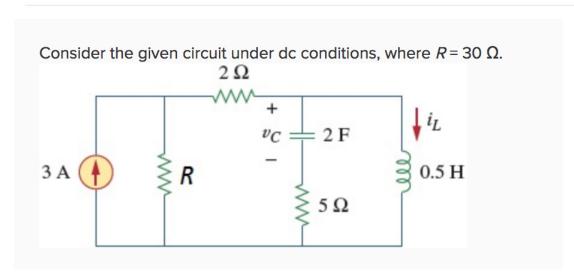


Find the voltage v_C .

The voltage v_C is $0 \pm 2\%$ V.

Explanation:

According to current division, the voltage v_C is 0 V. The voltage v_C is 0 V.



Find the energy stored in the inductor.

The energy stored in the inductor is $2.0 \pm 2\%$ J.

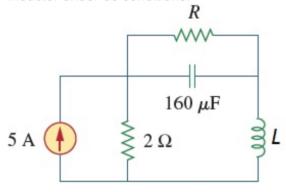
Explanation:

$$w_L = \frac{1}{2}Li_L^2 = \frac{1}{2}(\frac{1}{2})(2.8)^2 = 2.0 \text{ J}$$

The energy stored in the inductor is 2.0 J.

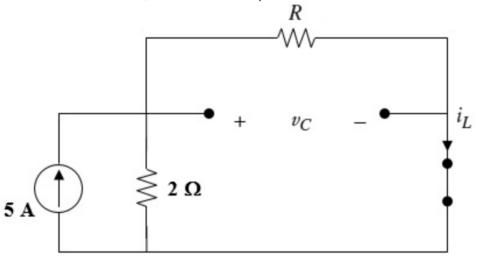
15.

Consider L = 30 mH in the given circuit and calculate the value of R that will make the energy stored in the capacitor the same as that stored in the inductor under dc conditions.



The value of R that will make the energy stored in the capacitor the same as that stored in the inductor under dc conditions is $13.69 \pm 2\%$ Ω .

Under dc conditions, the circuit is equivalent to that shown below:



$$i_L = \frac{2 \Omega}{R + 2 \Omega}$$
 (5 A) = $\frac{10}{R + 2}$

$$v_C = Ri_L = \frac{10R}{R+2}$$

$$w_C = \frac{1}{2}Cv_C^2 = 80 \times 10^{-6} \times \frac{100R^2}{(R+2)^2}$$

$$w_L = \frac{1}{2} L i_L^2 = \frac{1}{2} \times 30 \times 10^{-3} \text{ H} \times \frac{100}{(R+2)^2}$$

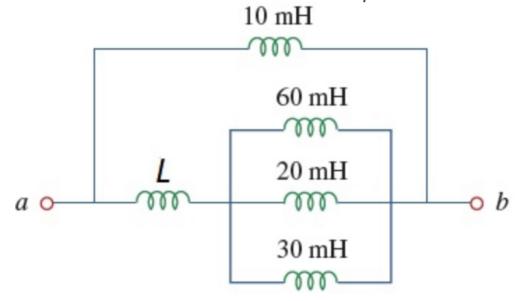
If
$$w_C = w_L$$
,

$$80 \times 10^{-6} \times \frac{100R^2}{(R+2)^2} = \frac{15.0 \times 10^{-8} \times 100}{(R+2)^2}$$

$$R = \sqrt{\frac{15.0 \times 10^{-3}}{80 \times 10^{-8}}} = 13.69 \ \Omega$$

The value of R that will make the energy stored in the capacitor the same as that stored in the inductor under dc conditions is 13.69 Ω .

Determine the equivalent inductance L_{eq} at terminals a-b of the given circuit, where L = 16 mH.



The equivalent inductance L_{eq} at terminals a-b of the circuit is $7.222 \pm 2\%$ mH.

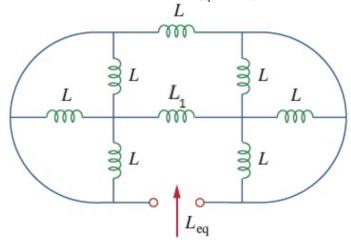
Explanation:

$$\frac{1}{L} = \frac{1}{60} + \frac{1}{20} + \frac{1}{30} = \frac{1}{10} \Rightarrow L = 10 \text{ mH}$$

$$L_{eq} = (10 \parallel (16 + 10)) \text{ mH} = \frac{10 \times (16 + 10)}{10 + (16 + 10)} \text{ mH} = 7.222 \text{ mH}$$

The equivalent inductance L_{eq} at terminals a-b of the circuit is 7.222 mH.

Find the equivalent inductance L_{eq} in the given circuit, where L = 5 H and $L_1 = 49$ H.



The equivalent inductance L_{eq} in the circuit is $4.56 \pm 2\%$ H.

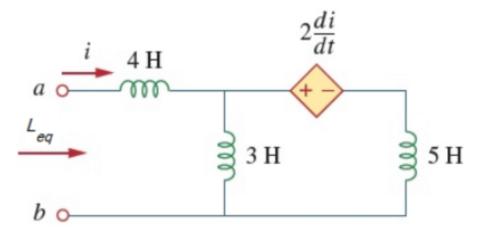
Explanation:

The given circuit is equivalent to that shown below:

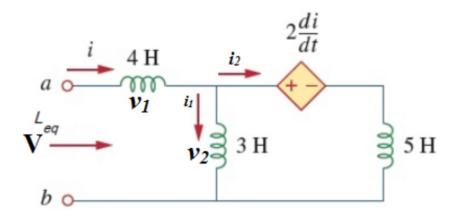
$$L_{\rm eq} \! = \! L \| \left(L_1 \! + \! \tfrac{2}{3} L \right) \! = \! L \| 52.334 \! = \! \left(\! 5 \| 52.334 \right) \! = \! \tfrac{\left(\! 5 \times 52.334 \right)}{\left(\! 5 + 52.334 \right)} \, {\rm H} \! = \! 4.56 \, {\rm H}$$

The equivalent inductance $L_{\it eq}$ in the circuit is 4.56 H.

Determine the equivalent inductance L_{eq} that may be used to represent the inductive network of the given figure at the terminals.



The equivalent inductance L_{eq} used to represent the inductive network is $6.625 \pm 2\%$ H.



Let
$$v = L_{eq} \frac{d\iota}{dt}$$
 (1)

$$v = v_1 + v_2 = 4 \frac{dt}{dt} + v_2$$
 (2)

$$i = i_1 + i_2 \rightarrow i_2 = i - i_1$$
 (3)

$$v_2 = 3 \frac{d\iota_1}{dt}$$
 or $\frac{d\iota_1}{dt} = \frac{v_2}{3}$ (4)

$$-\nu_2 + 2\frac{di}{dt} + 5\frac{di_2}{dt} = 0$$

$$v_2 = 2\frac{di}{dt} + 5\frac{di_2}{dt}$$
 (5)

Incorporating (3) and (4) into (5), $v_2 = 2\frac{di}{dt} + 5\frac{di}{dt} - 5\frac{di}{dt} = 7\frac{di}{dt} - 5\frac{v_2}{3}$

$$\nu_2\left(1+\frac{5}{3}\right) = 7\frac{dt}{dt}$$

$$v_2 = \frac{21}{8} \frac{dt}{dt}$$

Substituting this into (2) gives $v = 4\frac{dt}{dt} + \frac{21}{8}\frac{dt}{dt} = \frac{53}{8}\frac{dt}{dt}$

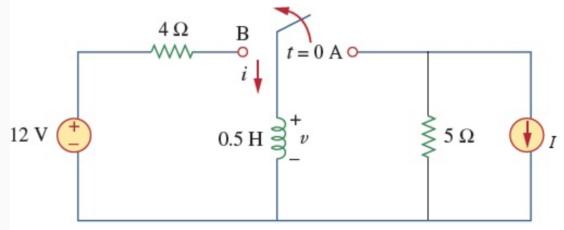
Comparing this with (1), $L_{eq} = \frac{53}{8} = 6.625~\mathrm{H}$

The equivalent inductance L_{eq} used to represent the inductive network is 6.625 H.

19. value:

10.00 points

The switch in the given figure has been in position A for a long time. At t = 0, the switch moves from position A to B. The switch is a make-before-break type so that there is no interruption in the inductor current. Consider the value of current I = 4 A.



Find the current i(t) for t > 0.

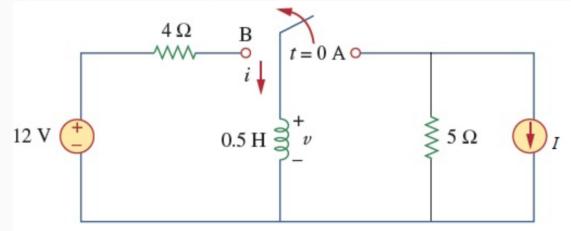
The current
$$i(t)$$
 is $(3 \pm 2\% - 7 \pm 2\% e^{-8 \pm 2\%} t)$ A

Explanation:

When the switch is in position A, i = -4 A = i(0)When the switch is in position B, $i(\infty) = 12/4 = 3$ A $\tau = L/R = 1/8$ $i(t) = i(\infty) + [i(0) - i(\infty)]e^{-t/\tau}$ $i(t) = (3 - 7e^{-8t})$ A

The current i(t) is $(3-7e^{-8t})$ A.

The switch in the given figure has been in position A for a long time. At t = 0, the switch moves from position A to B. The switch is a make-before-break type so that there is no interruption in the inductor current. Consider the value of current I = 4 A.



Find the voltage v(t) long after the switch is in position B.

The voltage v(t) long after the switch is in position B is $0 \pm 2\%$ V.

Explanation:

At steady state, the inductor becomes a short circuit so that v = 0 V.

The voltage v(t) long after the switch is in position B is 0 V.