A 741 op amp shown in the circuit given below has an open-loop voltage gain of 80000, an input resistance of 2 M Ω , and an output resistance of 140 Ω . Calculate the output voltage v_0 in the op amp circuit.

The output voltage of the op amp is mV.

The op amp in the circuit given below has R_i = 100 k Ω , R_0 = 100 Ω , V_S = 2 mV, and A = 100,000.

Calculate the output voltage v_o for the given op amp circuit.

The output voltage v_o for the given op amp circuit is mV.

The op amp in the circuit given below has $R_i = 100 \text{ k}\Omega$, $R_0 = 100 \Omega$, $V_S = 2 \text{ mV}$, and A = 100,000.

Calculate the differential voltage v_d . (v_d = voltage between +ve and –ve input)

The differential voltage v_d is nV.

10.00 points

Calculate the output voltage of the op amp circuit given below, where v_1 = 2.6 V and v_2 = 1.3 V.

The output voltage of the op amp circuit is V.

Find the output voltage v_o for the op amp circuit given below, where V = 4 V.

The output voltage v_o for the given op amp circuit is V.

Find the voltage gain v_0/v_s of the circuit given below, where R_1 = 10 k Ω and R_2 = 14 k Ω .

The voltage gain v_0/v_s of the circuit is

7.

value: 10.00 points

Calculate the voltage ratio v_0/v_s for the op amp circuit given below, where $R = 12 \text{ k}\Omega$. Assume that the op amp is ideal.

The voltage ratio v_0/v_s for the op amp circuit is

Consider the op amp circuit given below, where R_1 = 17 k Ω and v_s = 1 V.

Calculate the output voltage v_0 for the given circuit.

The output voltage v_o is V.

10.00 points

Identify the ratio $\frac{\nu_0}{k}$ in the given op amp circuit.

$$\bigcirc \frac{v_0}{t_0} = -\left(R_1 + R_3 + \frac{R_1 R_3}{R_2}\right)$$

$$\bigcap_{\overline{\imath_s}} = -\left(R_1 + \frac{\kappa_3}{R_1}\right)$$

$$\bigcirc \frac{v_0}{i_0} = -\left(R_1 + R_2 + \frac{R_1}{R_2}\right)$$

$$\bigcirc \frac{v_0}{t_0} = -\left(R_2 + R_3 + \frac{R_2 R_3}{R_1}\right)$$

Find the value of the ratio $\frac{v_0}{k}$ for R_1 = 17 k Ω , R_2 = 22 k Ω , and R_3 = 36 k Ω .

The value of the ratio $\frac{\nu_o}{\epsilon}$ = $k\Omega$.

Identify the ratio $\frac{\nu_0}{\xi}$ in the given op amp circuit.

$$\bigcirc \frac{v_0}{\zeta} = -\left(R_1 + R_2 + \frac{R_1}{R_2}\right)$$

$$\bigcirc$$
 $\frac{v_0}{i_8} = -\left(R_1 + R_3 + \frac{K_1K_3}{R_2}\right)$

$$\bigcirc \ \frac{v_0}{i_0} = -\left(R_1 + \frac{R_3}{R_1}\right)$$

$$\bigcirc \frac{v_0}{i_8} = -\left(R_2 + R_3 + \frac{K_2 K_3}{R_1}\right)$$

12.

In the circuit given below, $R_1 = 20 \text{ k}\Omega$, $R_2 = 76 \text{ k}\Omega$, and $R_3 = 12 \text{ M}\Omega$. Calculate the gain $\frac{v_0}{v_1}$ when the switch is in position 1, position 2, and position 3.

The gain $\frac{v_0}{v_i}$ at the position 1 is The gain $\frac{v_0}{v_i}$ at the position 2 is The gain $\frac{v_0}{v_i}$ at the position 3 is