A 741 op amp shown in the circuit given below has an open-loop voltage gain of 80000 , an input resistance of $2 \mathrm{M} \Omega$, and an output resistance of $140 \Omega$. Calculate the output voltage $v_{0}$ in the op amp circuit.


The output voltage of the op amp is $\qquad$ mV .

## 2. Valuen points

The op amp in the circuit given below has $R_{i}=100 \mathrm{k} \Omega, R_{0}=100 \Omega, v_{S}=2 \mathrm{mV}$, and $A=100,000$.


Calculate the output voltage $v_{o}$ for the given op amp circuit.
The output voltage $v_{o}$ for the given op amp circuit is $\qquad$ mV .
3. value: 10.00 points

The op amp in the circuit given below has $R_{i}=100 \mathrm{k} \Omega, R_{0}=100 \Omega, v_{S}=2 \mathrm{mV}$, and $A=100,000$.


Calculate the differential voltage $v_{d} \cdot\left(v_{d}=\right.$ voltage between + ve and - ve input $)$
The differential voltage $v_{d}$ is $\qquad$ nV .

Calculate the output voltage of the op amp circuit given below, where $v_{1}=2.6 \mathrm{~V}$ and $v_{2}=1.3 \mathrm{~V}$.


The output voltage of the op amp circuit is $\square$ V.

## 5. $\begin{aligned} & \text { value: } \\ & 10.00 \text { points }\end{aligned}$

Find the output voltage $v_{o}$ for the op amp circuit given below, where $V=4 \mathrm{~V}$.


The output voltage $v_{0}$ for the given op amp circuit is $\square$ V.

Find the voltage gain $v_{0} / v_{s}$ of the circuit given below, where $R_{1}=10 \mathrm{k} \Omega$ and $R_{2}=14 \mathrm{k} \Omega$.


The voltage gain $v_{0} / v_{s}$ of the circuit is $\qquad$ .

Calculate the voltage ratio $v_{0} / v_{\mathrm{s}}$ for the op amp circuit given below, where $R=12 \mathrm{k} \Omega$. Assume that the op amp is ideal.


The voltage ratio $v_{0} / v_{\mathrm{s}}$ for the op amp circuit is
8. $\quad$ value: 10.00 points

Consider the op amp circuit given below, where $R_{1}=17 \mathrm{k} \Omega$ and $\mathrm{v}_{\mathrm{S}}=1 \mathrm{~V}$.


Calculate the output voltage $v_{0}$ for the given circuit.
The output voltage $v_{o}$ is $\square$ V.
value: 10.00 points


Identify the ratio $\frac{v_{0}}{\omega_{0}}$ in the given op amp circuit.
$\bigcirc \frac{v_{0}}{\omega_{6}}=-\left(R_{1}+R_{3}+\frac{K_{1} K_{3}}{R_{2}}\right)$
( $\frac{\nu_{0}}{\tau_{s}}=-\left(R_{1}+\frac{K_{3}}{R_{1}}\right)$
$\frac{v_{0}}{\hbar_{5}}=-\left(R_{1}+R_{2}+\frac{K_{1}}{R_{2}}\right)$
$\frac{v_{0}}{b_{5}}=-\left(R_{2}+R_{3}+\frac{K_{2} R_{3}}{R_{1}}\right)$
10.
value:
10.00 points


Find the value of the ratio $\frac{v_{o}}{\frac{v_{0}}{6}}$ for $R_{1}=17 \mathrm{k} \Omega, R_{2}=22 \mathrm{k} \Omega$, and $R_{3}=36 \mathrm{k} \Omega$.
The value of the ratio $\frac{v_{0}}{L_{6}}=$ $\mathrm{k} \Omega$.
11. value: 10.00 points

Consider the circuit below.


Identify the ratio $\frac{\omega_{0}}{\omega_{5}}$ in the given op amp circuit.

- $\frac{v_{0}}{\hbar_{6}}=-\left(R_{1}+R_{2}+\frac{K_{1}}{R_{2}}\right)$
$\bigcirc \frac{v_{0}}{\hbar_{5}}=-\left(R_{1}+R_{3}+\frac{K_{1} K_{3}}{R_{2}}\right)$
$\bigcirc \frac{v_{0}}{\dot{L}}=-\left(R_{1}+\frac{K_{3}}{R_{1}}\right)$
$\bigcirc \frac{v_{0}}{\dot{b}_{5}}=-\left(R_{2}+R_{3}+\frac{R_{2} R_{3}}{R_{1}}\right)$

In the circuit given below, $R_{1}=20 \mathrm{k} \Omega, R_{2}=76 \mathrm{k} \Omega$, and $R_{3}=12 \mathrm{M} \Omega$. Calculate the gain $\frac{\nu_{0}}{\nu_{i}}$ when the switch is in position 1, position 2, and position 3.


The gain $\frac{v_{0}}{v_{i}}$ at the position 1 is
The gain $\frac{v_{0}}{v_{i}}$ at the position 2 is
The gain $\frac{v_{0}}{\nu_{i}}$ at the position 3 is

