Assume $I_o = 1$ A and use linearity to determine I_o in the given circuit when $I_s = 13$ A.

The current I_o is equal to ___ A.
2. Use the superposition principle to determine the voltage across 10 Ω resistor due to 5-A current source and 30-V voltage source. Determine i_o and v_o in the given circuit where $I = 5 \, \text{A}$.

The voltage across 10 Ω resistor solely due to 5-A current source is ___________ V.

The voltage across the 10 Ω resistor solely due to 30-V voltage source is ___________ V.

The value of v_o is ___________ V.

The value of i_o is ___________ A.
3. value:
10.00 points

Consider the circuit given below where \(V_1 = 114 \text{ V} \).

Use superposition to obtain \(v_x \) in the given circuit.

The value of \(v_x \) in the given circuit is \(\underline{\text{value}} \) V.
Assume \(v_{x1} \), \(v_{x2} \), and \(v_{x3} \) are due to 114-V, 6-A and 40-V sources.
Use superposition to solve for v_x in the given circuit where $I = 24$ A.

The value of v_x in the given circuit is \[V \]. Assume v_1 and v_2 are due to 4-A and 24-A sources.
Consider the given figure where $V_1 = 40\, \text{V}$ and $V_2 = 30\, \text{V}$. Use source transformations to reduce the circuit between terminals a and b to a single voltage source in series with a single resistor.

The equivalent resistor is ________ Ω.

The equivalent voltage is ________ V.

Use source transformation to find the voltage V_x in the given circuit where $I = 9$ A.

The voltage V_x in the given circuit is __________ V.
Apply source transformation to find v_x in the given circuit where $V = 70$ V.

The value of v_x in the given circuit is _______ V.
Use source transformation to find v_o in the circuit in the following figure if $R = 5 \, k\Omega$.

The voltage v_o is $\underline{\hspace{2cm}} \, V$.
Use Thevenin’s theorem to find v_o in the given circuit where $V = 8 \, \text{V}$.

The value of v_o in the given circuit is [] mV.
For the circuit given below, find the Thevenin equivalent between terminals a and b, where $V = 42$ V.

$R_{Th} = \underline{} \ \Omega$

$V_{Th} = \underline{} \ \text{V}$
Given the circuit in the following figure, obtain the Norton equivalent as viewed from the following terminals if \(R = 12 \, \Omega \).

Terminals a-b

\[
R_N = \quad \Omega \\
I_N = \quad A
\]
Consider the given circuit where $V = 85\, \text{V}$.

Determine the Norton equivalent circuit at terminals $a-b$ of the given circuit.

$R_N = \underline{} \, \Omega$

$I_N = \underline{} \, \text{A}$
Consider the given circuit where $V = 80\, \text{V}$.

Now let $R = 0\, \Omega$, $110\, \Omega$, and ∞. Calculate the power delivered to the $30\,-\,\Omega$ resistor in each case.

The power delivered to the $30\,-\,\Omega$ resistor when $R = 0\, \Omega$ is $\underline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}\,\text{W}$.
The power delivered to the $30\,-\,\Omega$ resistor when $R = 110\, \Omega$ is $\underline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}\,\text{W}$.
The power delivered to the $30\,-\,\Omega$ resistor when $R = \infty$ is $\underline{\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad}\,\text{W}$.