In the given circuit,
\[v(t) = 50 \, e^{-240t} \, V, \quad t > 0 \]
\[i(t) = 9 \, e^{-240t} \, mA, \quad t > 0 \]

Calculate the time constant \(\tau \).

The time constant \(\tau \) is \(\underline{} \) ms.

Hints

Hint #1

References

Worksheet Difficulty: Easy

Learning Objective: Understand solutions to unforced, first order linear differential equations.
2. **Award: 10.00 points**

Find the time constant for the RC circuit in the given figure. Assume \(R = 12 \, \Omega \).

The time constant for the RC circuit in the given figure is \(\boxed{\text{[s]}} \).

Hints

Hint #1

References

Worksheet Difficulty: Easy
Learning Objective: Understand solutions to unforced, first order linear differential equations.

3. **Award: 10.00 points**

The switch in the given figure has been in position \(A \) for a long time. Assume the switch moves instantaneously from \(A \) to \(B \) at \(t = 0 \). Find \(v \) for \(t > 0 \). Assume \(R = 3 \, k\Omega \).

The voltage \(v(t) = v(0) \, e^{-t/\tau} \), where \(v(0) = \boxed{\text{[V]}} \) and \(\tau = \boxed{\text{[s]}} \).
In the given circuit, find the unknown quantities of \(i(t) \) for \(t > 0 \) if \(i(0) = 8 \) A. Assume \(L = 7 \) H.

The current \(i(t) = 8e^{-\frac{t}{\tau}} \) A, where \(\tau = \) s.

[Diagram of the circuit with components labeled]
In the given circuit, find the value of R for which the steady-state energy stored in the inductor will be 1.6 J.

![Circuit Diagram]

The value of R is Ω.

6. **Award: 10.00 points**

Express $v(t)$ in the given figure in terms of step functions.

$v(t) = (5u(t - 1) + 10u(t) - 26u(t + 2) + 16u(t + 2))$ V
7. **Award: 10.00 points**

The voltage across a 10-mH inductor is $40 \delta(t - 2) \text{ mV}$. Find the inductor current, assuming that the inductor is initially uncharged.

The inductor current is $i(t) = \underline{u(t - 2)} \text{ A}$.

8. **Award: 10.00 points**

Find the solution of the differential equation $\frac{d^2 v}{dt^2} + 4v = 0, \quad v(0) = -1 \text{ V}$.

Hints

Hint #1

References

Multiple Choice Difficulty: Medium

Learning Objective: Understand singularity equations and their importance in solving linear differential equations.
The solution of the given differential equation is \(- (e^{\boxed{\text{t}}} V).\)

9. **Award: 10.00 points**

Identify the solution of the following differential equation, subject to the stated initial condition.

\[
2 \frac{dv}{dt} - v = 3u(t), \quad v(0) = -6
\]

- \(v(t) = 3 \left(1 - e^{t/2}\right) u(t) V, \quad t > 0\)
- \(v(t) = -3 \left(1 + e^{t/2}\right) u(t) V, \quad t > 0\)
- \(v(t) = 3 \left(1 - e^{t/2}\right) V, \quad t < 0\)
- \(v(t) = -3 \left(1 + e^{t/2}\right) V, \quad t < 0\)
A circuit is described by

\[1 \frac{d^2}{dt^2} + \nu = 10. \]

References

Section Break

Difficulty: Medium

Learning Objective: Understand singularity equations and their importance in solving linear differential equations.

10. **Award: 10.00 points**

If \(\nu(0) = 4 \), find \(\nu(t) \) for \(t \geq 0 \).

The voltage \(\nu(t) = \text{[Blank]} + \text{[Blank]} (e^{-t}) \times u(0) \text{V.} \)

Hints

Hint #1

Hint #2

References

Worksheet

Difficulty: Medium

Learning Objective: Understand singularity equations and their importance in solving linear differential equations.