In the given circuit,  

$$v(t) = 58 e^{-240t} V, t > 0$$

$$i(t) = 9 e^{-240t} mA, t > 0$$

$$i$$

$$R \neq v$$

$$r$$

$$r$$

$$r$$

$$r$$

#### References

Learning Objective: Understand solutions to unforced, first order linear differential equations.

# 1. Award: 10.00 points



## 2. Award: 10.00 points



# 3. Award: 10.00 points

The switch in the given figure has been in position *A* for a long time. Assume the switch moves instantaneously from *A* to *B* at t = 0. Find *v* for t > 0. Assume  $R = 3 \text{ k}\Omega$ .  $5 \text{ k}\Omega A$   $B = 10 \mu\text{F} + v$  - 40 V + B = R

The voltage  $v(t) = v(0) e^{-t/\tau}$ , where v(0) = V and  $\tau = V$ 

s.





In the given circuit, find the unknown quantities of i(t) for t > 0 if i(0) = 8 A. Assume L = 7 H.



In the given circuit, find the value of R for which the steady-state energy stored in the inductor will be 1.6 J.



## 6. Award: 10.00 points

Express v(t) in the given figure in terms of step functions.



7.

|                                                                                                  |                                            | 5u(t) + 15u(t-2)) V                                                                                                 |  |
|--------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|
| O v(t) = (5u(t-2) + 10u(t-1) - 25u(t) + 15u(t+1)) V                                              |                                            |                                                                                                                     |  |
| $\bigcup v(t) = (5u)$                                                                            | (t+1) + 10u(t) - 25u(t)                    | (t-1) + 15u(t-2)) V                                                                                                 |  |
|                                                                                                  |                                            |                                                                                                                     |  |
| Hints                                                                                            |                                            |                                                                                                                     |  |
| <u>Hint #1</u>                                                                                   |                                            |                                                                                                                     |  |
|                                                                                                  |                                            |                                                                                                                     |  |
| References                                                                                       |                                            |                                                                                                                     |  |
| Multiple Choice                                                                                  | Difficulty: Medium                         | Learning Objective: Understand singularity equations and their importance in solving linear differential equations. |  |
|                                                                                                  |                                            |                                                                                                                     |  |
| Auroral 10 00 mainte                                                                             |                                            |                                                                                                                     |  |
| Awara: 10.00 points                                                                              |                                            |                                                                                                                     |  |
| Award: 10.00 points                                                                              |                                            |                                                                                                                     |  |
| Awara: 10.00 points                                                                              |                                            |                                                                                                                     |  |
|                                                                                                  |                                            |                                                                                                                     |  |
| The voltage across                                                                               | a 10-mH inductor is <b>40</b>              | $\delta(t-2){ m mV}$ . Find the inductor current, assuming the                                                      |  |
| The voltage across inductor is initially u                                                       | a 10-mH inductor is <b>40</b><br>ncharged. | $\delta(t-2)$ mV. Find the inductor current, assuming the $u(t-2)$ A.                                               |  |
| The voltage across inductor is initially u                                                       | a 10-mH inductor is <b>40</b><br>ncharged. |                                                                                                                     |  |
| The voltage across inductor is initially u                                                       | a 10-mH inductor is <b>40</b><br>ncharged. |                                                                                                                     |  |
| The voltage across<br>inductor is initially u<br>The inductor curren<br>Hints                    | a 10-mH inductor is <b>40</b><br>ncharged. |                                                                                                                     |  |
| The voltage across<br>inductor is initially u<br>The inductor curren                             | a 10-mH inductor is <b>40</b><br>ncharged. |                                                                                                                     |  |
| The voltage across<br>inductor is initially u<br>The inductor curren<br>Hints                    | a 10-mH inductor is <b>40</b><br>ncharged. |                                                                                                                     |  |
| The voltage across<br>inductor is initially u<br>The inductor current<br>Hints<br><u>Hint #1</u> | a 10-mH inductor is <b>40</b><br>ncharged. |                                                                                                                     |  |

8. Award: 10.00 points

Find the solution of the differential equation  $\frac{dv}{dt} + 4v = 0$ , v(0) = -1 V.

| The solution of the given differential equation is $-(e^{-t}) \vee t$ |
|-----------------------------------------------------------------------|
|-----------------------------------------------------------------------|

| Hints          |                    |                                                                                                                           |
|----------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|
| <u>Hint #1</u> |                    |                                                                                                                           |
| References     |                    |                                                                                                                           |
| Worksheet      | Difficulty: Medium | Learning Objective: Understand singularity<br>equations and their importance in solving<br>linear differential equations. |

# 9. Award: 10.00 points

Identify the solution of the following differential equation, subject to the stated initial condition.

$$2\frac{dv}{dt} - v = 3u(t), \quad v(0) = -6$$

$$v(t) = 3 (1 - e^{t/2}) u(t) V, \quad t > 0$$

$$(t) = -3 (1 + e^{t/2}) u(t) V, \quad t > 0$$

$$v(t) = 3 (1 - e^{t/2}) V, \quad t < 0$$

$$O_{v(t)} = -3(1 + e^{t/2}) V, \quad t < 0$$

### Hints

| <u>Hint #1</u> |  |  |  |
|----------------|--|--|--|
| Line #0        |  |  |  |
| <u>Hint #2</u> |  |  |  |
|                |  |  |  |

#### References

| Multiple Choice | Difficulty: Medium | Learning Objective: Understand singularity |
|-----------------|--------------------|--------------------------------------------|
|                 |                    | equations and their importance in solving  |
|                 |                    | linear differential equations.             |

| 2018 | Assignment Print View                                   |                         |                                                                                                                     |
|------|---------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------|
|      | A circuit is described<br>$1 \frac{dv}{dt} + v = 10$    | d by                    |                                                                                                                     |
|      | References                                              |                         |                                                                                                                     |
|      | Section Break                                           | Difficulty: Medium      | Learning Objective: Understand singularity equations and their importance in solving linear differential equations. |
| 10.  | Award: 10.00 points                                     |                         |                                                                                                                     |
|      | If $v(0) = 4$ , find $v(t)$ for<br>The voltage $v(t) =$ | or <i>t</i> ≥ 0.<br>+ ( | ) ( $e^{-t}$ ) × $u(t)$ V.                                                                                          |
|      | Hints                                                   |                         |                                                                                                                     |
|      | <u>Hint #1</u><br><u>Hint #2</u>                        |                         |                                                                                                                     |
|      | References                                              |                         |                                                                                                                     |
|      | Worksheet                                               | Difficulty: Medium      | Learning Objective: Understand singularity equations and their importance in solving linear differential equations. |