In the given circuit,
$v(t)=58 e^{-24 U \tau} \mathrm{~V}, t>0$
$t(t)=9 e^{-240 t} \mathrm{~mA}, t>0$


References

Section Break $\quad$ Difficulty: Easy $\quad$| Learning Objective: Understand solutions to |
| :--- |
| unforced, first order linear differential |
| equations. |

1. Award: 10.00 points

Calculate the time constant $\tau$.
The time constant $\tau$ is $\square$ ms.

## Hints

Hint \#1

## References

Worksheet Difficulty: Easy Learning Objective: Understand solutions to unforced, first order linear differential equations.
2. Award: 10.00 points

Find the time constant for the RC circuit in the given figure. Assume $R=12 \Omega$.


The time constant for the RC circuit in the given figure is $\qquad$ s.

Hints

Hint \#1

## References

Worksheet Difficulty: Easy Learning Objective: Understand solutions to unforced, first order linear differential equations.
3. Award: 10.00 points

The switch in the given figure has been in position $A$ for a long time. Assume the switch moves instantaneously from $A$ to $B$ at $t=0$. Find $v$ for $t>0$. Assume $R=3 \mathrm{k} \Omega$.


The voltage $v(t)=v(0) e^{-t / \tau}$, where $v(0)=$ $\qquad$ V and $\tau=$ $\qquad$ s.

Hints

Hint \#1

## References

Worksheet Difficulty: Medium Learning Objective: Understand solutions to unforced, first order linear differential equations.

## 4. Award: 10.00 points

In the given circuit, find the unknown quantities of $i(t)$ for $t>0$ if $i(0)=8 \mathrm{~A}$. Assume $L=7 \mathrm{H}$.


The current ${ }^{i}(t)=8 e^{-t \tau} A$, where $\tau=\square \mathrm{s}$.

Hints

Hint \#1

## References

Worksheet Difficulty: Medium Learning Objective: Understand solutions to unforced, first order linear differential equations.

In the given circuit, find the value of $R$ for which the steady-state energy stored in the inductor will be 1.6 J .


The value of $R$ is $\qquad$ $\Omega$.

Hints

Hint \#1
Hint \#2
Hint \#3

## References

Worksheet Difficulty: Medium Learning Objective: Understand solutions to unforced, first order linear differential equations.

Express $v(t)$ in the given figure in terms of step functions.

$\bigcirc v(t)=(5 u(t-1)+10 u(t)-25 u(t+2)+15 u(t+2)) \mathrm{V}$
$v(t)=(5 u(t+1)+10(t-1)-25 u(t)+15 u(t-2)) v$
$\bigcirc(t)=(5 u(t-2)+10 u(t-1)-25 u(t)+15 u(t+1)) \mathrm{V}$
$\bigcirc(t)=(5 u(t+1)+10 u(t)-25 u(t-1)+15 u(t-2)) \mathrm{V}$

Hints

Hint \#1

## References

Multiple Choice Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.
7. Award: 10.00 points

The voltage across a $10-\mathrm{mH}$ inductor is $40 \delta(t-2) \mathrm{mV}$. Find the inductor current, assuming that the inductor is initially uncharged.

The inductor current is $i(t)=\square u(t-2) \mathrm{A}$.

## Hints

Hint \#1

## References

Worksheet Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.
8. Award: 10.00 points

Find the solution of the differential equation $\frac{d v}{d t}+4 v=0, v(0)=-1 \mathrm{~V}$.

The solution of the given differential equation is $-\left(e^{-}\right.$ $\square$ $\left.{ }^{t}\right) \mathrm{V}$.

Hints

Hint \#1

## References

Worksheet Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.

## 9. Award: 10.00 points

Identify the solution of the following differential equation, subject to the stated initial condition.
$2 \frac{d v}{d t}-v=3 u(t), \quad v(0)=-6$
$v(t)=3\left(1-e^{t / 2}\right) u(t) \vee, \quad t>0$
$v(t)=-3\left(1+e^{t / 2}\right) u(t) \vee, \quad t>0$
$V(t)=3\left(1-e^{t / 2}\right) V, \quad t<0$

O
$V(t)=-3\left(1+e^{t / 2}\right) V, \quad t<0$

Hints

Hint \#1
Hint \#2

References

Multiple Choice Difficulty: Medium

Learning Objective: Understand singularity equations and their importance in solving linear differential equations.

A circuit is described by
$1 \frac{d v}{d t}+v=10$.

## References

Section Break Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.
10. Award: 10.00 points

If $v(0)=4$, find $v(t)$ for $t \geq 0$.
The voltage $v(t)=$ $\square$ $+($ $\qquad$ ) ( $e^{-}$ $\qquad$ $t) \times u(t) V$.

Hints

Hint \#1
Hint \#2

## References

Worksheet Difficulty: Medium Learning Objective: Understand singularity equations and their importance in solving linear differential equations.

