EE 101 Lecture #23 May 7, 2018

- Problem solving section on March 17. See the time and place to be announced.
- Course review on March 16 (Fri).
- Final Exam (12 problems) 3 hrs = 180 min - start

Coverage: chapters 1, 2, 13 (transistor, coupled inductors)
14 (14.2 - 14.4 state plots)

Example:

\[
\begin{align*}
R &= 40 \Omega \\
L &= 1 H \\
C &= \frac{1}{4} F
\end{align*}
\]

1. Calculate the characteristic roots of the circuit: \(\lambda^2 + 4\lambda + \frac{1}{4} = 0\)
2. Solve the characteristic equation:
\[
\lambda = -2 \pm \frac{1}{2} \sqrt{3} i
\]

\[
\begin{align*}
\lambda_1 &= -2 + \frac{1}{2} \sqrt{3} i \\
\lambda_2 &= -2 - \frac{1}{2} \sqrt{3} i
\end{align*}
\]

3. Since \(\lambda_1 \neq \lambda_2\), only one exponential term will be needed.

\[
\lambda(t) = A_1 e^{-2t} \cos \left(\frac{\sqrt{3}}{2} t \right) + A_2 e^{-2t} \sin \left(\frac{\sqrt{3}}{2} t \right)
\]

Parallel RLC Circuit

In series RLC circuit, the current is common to all elements (same).
In parallel RLC circuit, the voltage is common (same).

\[
V_{RLC} = \frac{V}{R} + \frac{1}{C} \int i dt + \frac{1}{L} \int v dt = 0
\]

\[
V_{RLC} = \frac{1}{R} \int i dt + \frac{1}{C} \int v dt + \frac{1}{L} \int i dt = 0
\]

Thus, \(i + \frac{1}{R} + \frac{1}{C} \int i dt = 0\)

\[
\frac{\dot{i} + i}{L} + \frac{1}{C} \frac{di}{dt} + \frac{1}{R} i = 0
\]

\[
\frac{\dot{i} + i}{L} + \frac{1}{C} \frac{di}{dt} + \frac{1}{R} i = 0
\]

\[
\frac{\dot{i} + i}{L} + \frac{1}{C} \frac{di}{dt} + \frac{1}{R} i = 0
\]

\[
\frac{\dot{i} + i}{L} + \frac{1}{C} \frac{di}{dt} + \frac{1}{R} i = 0
\]
Dual pairs:

<table>
<thead>
<tr>
<th>Dual pair</th>
<th>Conductance g</th>
<th>Inductance L</th>
<th>Capacitance C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage v</td>
<td>Current i</td>
<td>Voltage source</td>
<td>Current source</td>
</tr>
<tr>
<td>Node</td>
<td>Mesh</td>
<td>Series-path</td>
<td>Parallel path</td>
</tr>
<tr>
<td>Open circuit</td>
<td>Short circuit</td>
<td>KVL</td>
<td>KCL</td>
</tr>
<tr>
<td>Thevenin</td>
<td>Norton</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Two circuits that are described by equations of the same form, but in which the variables are interchanged, are said to be dual to each other.

Two circuits are said to be duals of one another if they are described by the same characterizing equations with dual quantities interchanged.

Example:

Given the characteristic eq. of the parallel RLC circuit as

\[
\frac{d^2}{dt^2} + \frac{1}{RC} \frac{d}{dt} + \frac{1}{L} = 0
\]

Let \(\omega_c = \frac{1}{\sqrt{LC}} \)

Case 1: \(\omega > \omega_c \), \(\frac{1}{L} > \frac{1}{RC} \)

\[
V(t) = A e^{\omega_1 t} + B e^{\omega_2 t}
\]

Case 2: \(\omega = \omega_c \), \(\frac{1}{L} = \frac{1}{RC} \)

\[
V(t) = A e^{\omega_1 t} + A \omega_1 t + B e^{\omega_2 t}
\]

Parallel RLC Circuit (recalled):

In series RLC circuit, the current is C common to all elements.

In parallel RLC circuit, the node voltage is common.

\[
\begin{align*}
KCL & \Rightarrow \frac{1}{R} + \frac{1}{L} = C \frac{d}{dt} + C \frac{\Delta V}{\Delta t} = 0 \\
\Delta V & \Rightarrow \frac{\Delta V}{\Delta t} = \frac{\Delta V}{\Delta t} + \frac{L}{C} \frac{\Delta i}{\Delta t} = 0 \\
\text{Thus} & \quad \frac{d^2}{dt^2} + \frac{1}{RC} \frac{d}{dt} + \frac{1}{L} = 0
\end{align*}
\]

Case 1: \(\omega > \omega_c \), \(\Delta V = 0 \)

\[
\frac{d}{dt} \left(e^{-\omega_c t} \right) = \frac{\Delta V}{\Delta t} = 0
\]

\[
V(t) = e^{-\omega_c t} \left(A_1 e^{\omega_1 t} + A_2 e^{\omega_2 t} \right)
\]

Case 2: \(\omega = \omega_c \), \(\Delta V = 0 \)

\[
\frac{d^2}{dt^2} + \frac{1}{RC} \frac{d}{dt} + \frac{1}{L} = 0
\]

\[
\frac{d}{dt} \left(e^{-\omega_c t} \right) = \frac{\Delta V}{\Delta t} = 0
\]

\[
V(t) = e^{-\omega_c t} \left(A_1 e^{\omega_1 t} + A_2 e^{\omega_2 t} \right)
\]
Example

\[V(t) = \frac{1}{L} \frac{dI}{dt} = \frac{1}{LC} \frac{dQ}{dt} = \frac{1}{LC} \sin \omega t \]

\[I = \frac{1}{LC} \frac{dQ}{dt} = \frac{1}{LC} \sin \omega t \]

\[\Psi(t) = C \cos \omega t \]

\[\frac{d\Psi(t)}{dt} = -C \omega \sin \omega t \]

\[\frac{d^2\Psi(t)}{dt^2} = -C \omega^2 \cos \omega t \]

\[C \frac{d^2\Psi(t)}{dt^2} + M \omega^2 \Psi(t) = 0 \]

Case 2:

\[\frac{d\Psi(t)}{dt} = C \omega \sin \omega t \]

\[\frac{d^2\Psi(t)}{dt^2} = C \omega^2 \cos \omega t \]

\[C \frac{d^2\Psi(t)}{dt^2} + M \omega^2 \Psi(t) = 0 \]

Step (input) Response of RLC Circuits.

\[V(t) = \frac{1}{L} \frac{dQ}{dt} = \frac{1}{LC} \sin \omega t \]

Series RLC

\[V(t) = V_i + V_q \]

Parallel RLC

\[V(t) = \frac{1}{L} \frac{dQ}{dt} = \frac{1}{LC} \sin \omega t \]

Pendulum

\[\frac{d^2\theta}{dt^2} = \frac{mgL \sin \theta}{\ell} \]

:\[\frac{d^2\theta}{dt^2} = \frac{mgL \sin \theta}{\ell} \]

Example

\[V(t) = \frac{1}{L} \frac{dQ}{dt} = \frac{1}{LC} \sin \omega t \]

\[\frac{d\Psi(t)}{dt} = C \omega \sin \omega t \]

\[\frac{d^2\Psi(t)}{dt^2} = C \omega^2 \cos \omega t \]

\[C \frac{d^2\Psi(t)}{dt^2} + M \omega^2 \Psi(t) = 0 \]

Case 2:

\[\frac{d\Psi(t)}{dt} = C \omega \sin \omega t \]

\[\frac{d^2\Psi(t)}{dt^2} = C \omega^2 \cos \omega t \]

\[C \frac{d^2\Psi(t)}{dt^2} + M \omega^2 \Psi(t) = 0 \]
\[\ddot{x}(t) = -\frac{4}{4} M \cos(\omega t + \theta) \quad \omega = 2.4785 \]
\[M \cos(\omega t + \theta) = 4.16 e^{0.9 t} \cos(0.5 - 15.5 \theta) \]
\[\dot{x}_d(t) = M \cos(-\theta) = M \cos \theta = 4 \left[\cos = \frac{4}{4} \right] \]
\[\dot{x}_d(t) = \frac{-4}{4} M \cos(\omega t + \theta) \]
\[\int_{0}^{t} e^{-4 t} M \cos(\omega t + \theta) dt = -0.5 M \cos \theta + 0.5 M \sin \theta = \dot{x}_d(t) \]
\[L_d(t) = 0.25 = 0.25 \]
\[\dot{x}(0) = 5 \quad \dot{x}(t) = 0 \]
\[\dot{x}(0) = -5 + \omega \tan \theta = -0.97 + 2.4895 \tan \theta \]
\[\tan \theta = (\frac{0.97}{0.25} + 0.5) \quad 2.4895 \approx 0.291 \]