The Missing Link in Constitutive Relations

- Q = CV (Capacitor)
- V = RI (Resistor)
- Φ = LI (Inductor)

\[
\Phi = \int V \, dt
\]

Capacitor (1745) by
- Ewald Georg von Kleist
- Resistor (1827) by
- Georg Simon Ohm
- Inductor (1831) by
- Michael Faraday

Memristor—The missing circuit element

<table>
<thead>
<tr>
<th>Sign or Purchase</th>
<th>290.0</th>
<th>29.0</th>
<th>1290.0</th>
</tr>
</thead>
</table>

Abstract

A new two-terminal circuit element, the memristor, is one of the fundamental components in circuits. Its unique properties make it a versatile device in various applications.

Memristive devices and systems

<table>
<thead>
<tr>
<th>Sign or Purchase</th>
<th>207.0</th>
<th>28.0</th>
<th>956.0</th>
</tr>
</thead>
</table>

Abstract

A memristor is a device whose resistance changes in response to the amount of charge that has passed through it. This property makes it useful in many applications, including memory storage and analog computing.

Figure 6.1 A typical capacitor.

The missing memristor found

Authors: Immo B. Studier, Gregory S. Beiler, Duncan R. Stewart, and R. Stanley Williams

Abstract

Anyone who ever took an electronics laboratory class will be familiar with the fundamental passive circuit elements: the resistor, the capacitor, and the inductor. However, in 1973 Leon Chua reasoned from symmetry arguments that there should be a fourth fundamental element, which he called a memristor (short for memory resistor).
Capacitance $C \ [F]$

$$\varepsilon = \varepsilon_0 \varepsilon_r$$

For air, $\varepsilon_0 = 8.85 \times 10^{-12} \text{F/m}$

$\varepsilon_r = 1 - 1.0 \times 10^{-6}$

For air, $\varepsilon = \varepsilon_0 \varepsilon_r = 8.85 \times 10^{-12} \times 1 - 1.0 \times 10^{-6}$

$$C = \varepsilon_0 \frac{1}{L} \text{cm}^2 \text{m} = 8.85 \times 10^{-12} \times 10 = 8.85 \times 10^{-11} \text{F}$$

$$\frac{1}{C} = L \text{m} = \frac{1}{8.85 \times 10^{-11}} \text{m} = 110 \text{mF}$$

$$V(t) = C \frac{d}{dt} \int_0^t i(t) \, dt$$

$$L = \frac{N^2 \mu A}{C}$$

(6.19)

where N is the number of turns, l is the length, A is the cross-sectional area, and μ is the permeability of the core. We can see from Eq. (6.19) that inductance can be given as

$$L = \frac{N^2 \mu A}{C}$$

Figure 6.21 Typical form of an inductor.
For inductor:

\[p(t) = v(t) i(t) = L \frac{dv(t)}{dt} \]

\[E(t) = \int p(t) \, dt = \int L \frac{dv(t)}{dt} \, dt = L \int v(t) \, dv(t) = \frac{1}{2} \left[i(t)^2 - i(0)^2 \right] \]

Parallel connection:

\[\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} \quad \frac{1}{C_{eq}} = \frac{C_1 C_2}{C_1 + C_2} \]

\[C_{eq} = C_1 + C_2 \quad C_{eq} = \frac{1}{C_1} + \frac{1}{C_2} \]

\[C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \quad \frac{1}{C_{eq}} = \frac{1}{3} \quad \frac{1}{C_{eq}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \]

\[C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \quad \frac{1}{C_{eq}} = \frac{1}{3} \quad \frac{1}{C_{eq}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \]

\[C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \quad \frac{1}{C_{eq}} = \frac{1}{3} \quad \frac{1}{C_{eq}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \]

\[C_{eq} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \quad \frac{1}{C_{eq}} = \frac{1}{3} \quad \frac{1}{C_{eq}} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2}} \]
TABLE 6.1

<table>
<thead>
<tr>
<th>Relation</th>
<th>Resistor (R)</th>
<th>Capacitor (C)</th>
<th>Inductor (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>v/R</td>
<td>$v = \text{IR}$</td>
<td>$v = \frac{1}{C} \int i(t) , dt + v_i(t)$</td>
<td>$v = L \frac{di}{dt}$</td>
</tr>
<tr>
<td>$i = \frac{v}{R}$</td>
<td>$i = \frac{C}{v} \int i(t) , dt$</td>
<td>$i = \frac{1}{L} \int v(t) , dt + i_0$</td>
<td></td>
</tr>
<tr>
<td>$P = vR$</td>
<td>$P = \frac{v^2}{R}$</td>
<td>$P = \frac{1}{2} C v^2$</td>
<td>$P = \frac{1}{2} L i^2$</td>
</tr>
<tr>
<td>Series</td>
<td>$R_s = R_1 + R_2$</td>
<td>$C_s = C_1 + C_2$</td>
<td>$L_s = L_1 + L_2$</td>
</tr>
<tr>
<td>Parallel</td>
<td>$R_p = \frac{R_1 R_2}{R_1 + R_2}$</td>
<td>$C_p = C_1 + C_2$</td>
<td>$L_p = \frac{L_1 L_2}{L_1 + L_2}$</td>
</tr>
</tbody>
</table>

At dc: Same | Open-circuit | Short-circuit |

It is appropriate at this point to enumerate the most important characteristics of the three basic circuit elements we have studied. The summary is given in Table 6.1.
\[v(t) = \{ 0, t < 0 \} \]
\[i(t) = \begin{cases} 0, & t \leq 0 \\ \frac{1}{\tau} \int_{0}^{t} v(\tau) \, d\tau + \frac{1}{\tau}, & t > 0 \end{cases} \]
\[v(t) = \frac{1}{\tau} \int_{0}^{t} v(\tau) \, d\tau \]
\[P(t) = v(t) i(t) \]
\[E(t) = \int_{0}^{t} P(t) \, dt = \frac{1}{2} \frac{1}{\tau^2} \]

\[L = 1 \text{ mH} \]
\[\dot{i}(t) = L \frac{di(t)}{dt} \]
\[i(t) = \int_{0}^{t} \frac{1}{L} \, dt = \frac{1}{L} (t + C) \]
\[v(t) = 10 \sin(\omega t) \]
\[\sqrt{v(t)} = 10 \frac{\omega}{\sqrt{2}} \sin(\omega t) \]
\[P(t) = v(t) i(t) = 10 \frac{\omega}{2} \sin(\omega t) \cos(\omega t) \]
\[E(t) = \int_{0}^{t} P(t) \, dt = 5 \frac{\omega}{2} \sin(\omega t) \cos(\omega t) \]